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Abstract—We present the Bayesian consensus filter (BCF) for
tracking a moving target using a networked group of sensing
agents and achieving consensus on the best estimate of the prob-
ability distributions of the target’s states. Our BCF framework
can incorporate nonlinear target dynamic models, heterogeneous
nonlinear measurement models, non-Gaussian uncertainties, and
higher-order moments of the locally estimated posterior proba-
bility distribution of the target’s states obtained using Bayesian
filters. If the agents combine their estimated posterior probability
distributions using a logarithmic opinion pool, then the sum of
Kullback–Leibler divergences between the consensual probability
distribution and the local posterior probability distributions is
minimized. Rigorous stability and convergence results for the
proposed BCF algorithm with single or multiple consensus loops
are presented. Communication of probability distributions and
computational methods for implementing the BCF algorithm are
discussed along with a numerical example.

I. INTRODUCTION

Distributed estimation, where a group of networked agents
collectively estimate the target’s states, can be used for envi-
ronment and pollution monitoring, tracking dust or volcanic
ash clouds, tracking orbital debris or asteroids in space, etc
[1]– [5]. The term distributed estimation refers to finding the
best estimate of the target’s states using the sensor network
while the term consensus means reaching an agreement across
the network [6]– [10].

Many existing algorithms for distributed estimation [1]– [5],
[11]– [15] aim to reach an agreement across the network on
the estimated mean (first moment of the estimated probability
distribution) of the target dynamics, but cannot incorporate
nonlinear target dynamics, heterogeneous nonlinear measure-
ment models, non-Gaussian uncertainties, or higher-order mo-
ments of the locally estimated posterior probability distribution
of the target’s states. It is difficult to recursively combine
local mean and covariance estimates using a linear consensus
algorithm because the dimension of the vector transmitted
by each agent increases linearly with time due to correlated
process noise [16] and the covariance update equation is
usually approximated by a consensus gain [17].

Multi-agent tracking or sensing networks are deployed in a
distributed fashion when the target dynamics have complex
temporal and spatial variations. Hence, it is necessary to
preserve the complete information captured in the locally
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estimated posterior probability distribution of the target’s states
while achieving consensus across the network. The main aim
of this paper is to extend the scope of distributed estimation
algorithms to track targets with general nonlinear dynamic
models with stochastic uncertainties, thereby addressing the
aforementioned shortcomings.

Bayesian filters [18], [19] recursively calculate the probabil-
ity density/mass function of the beliefs and update them based
on new measurements. The main advantage of Bayesian filters
over Kalman filter–based methods for estimation of nonlinear
target dynamic models is that no approximation is needed
during the filtering process. Advances in computational capa-
bility have facilitated the implementation of Bayesian filters
for robotic localization and mapping [20] as well as planning
and control [21]. Practical implementation of these algorithms,
in their most general form, is achieved using particle filtering
[22] and Bayesian programming [23]. This paper focuses on
developing a consensus framework for distributed Bayesian
filters.

The statistics literature deals with the problem of reaching a
consensus among individuals in a complete graph, where each
individual’s opinion is represented as a probability distribution
[24], [25]; and under select conditions, it is shown that con-
sensus is achieved within the group [26]. Exchange of beliefs
in decentralized systems, under communication constraints, is
considered in [27], [28]. Algorithms for combining probability
distributions within the exponential family, i.e., the limited
class of unimodal distributions that can be expressed as an
exponential function, are studied in [29], [30]. If the target’s
states are discrete random variables, then the local estimates
can be combined using a tree-search algorithm [31] or a linear
consensus algorithm [32], [33]. In contrast, this paper focuses
on developing generalized Bayesian consensus algorithms with
rigorous convergence analysis for achieving consensus across
the network without any assumption on the shape of local prior
or posterior probability distributions. The proposed distributed
estimation using Bayesian consensus filtering aims to reach
an agreement across the network on the best estimate, in
information theoretic sense, of the probability distribution of
the target’s states.

In this paper, we assume that agents generate their local
estimate of the posterior probability distribution of the tar-
get’s states using Bayesian filters with/without measurement
exchange with neighbors. Then, we develop algorithms for
combining these local estimates, using the logarithmic opinion
pool (LogOP), to generate the consensual estimate of the prob-
ability distribution of the target’s states across the network.
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Finally, we introduce the Bayesian consensus filter (BCF),
where the local prior estimates of the target’s states are first
updated and the local posterior probability distributions are
recursively combined during the consensus stage, so that the
agents can estimate the consensual probability distribution of
the target’s states while simultaneously maintaining consensus
across the network. The pseudo-code for the algorithm is given
in Algorithm 1. The novel features of the BCF algorithm are:
• The algorithm can be used to track targets with general

nonlinear time-varying target dynamic models.
• The algorithm can be used by a SC balanced network

of heterogeneous agents, with general nonlinear time-
varying measurement models.

• The algorithm achieves global exponential convergence
across the network to the consensual probability distribu-
tion of the target’s states.

• The consensual probability distribution is the best es-
timate, in the information theoretic sense because it
minimizes the sum of KL divergences with the locally
estimated posterior probability distributions. If a central
agent receives all the local posterior probability distri-
butions and is tasked to find the best estimate in the
information theoretic sense, then it would also yield
the same consensual probability distribution. Hence, we
claim to have achieved distributed estimation using the
BCF algorithm.

The Hierarchical BCF algorithms is used when some of the
agents do not observe the target. We apply the Hierarchical
BCF algorithm to the problem of tracking orbital debris in
space using the space surveillance network on Earth.

A. Notation
The time index is denoted by a right subscript while the

agent index is denoted by a lower-case right superscript. Let
xk represent the true target’s states at the kth time instant. Let
zjk represents the measurement taken by the jth agent at the
kth time instant. Let F jk represents the estimated probability
density function (pdf) of the target’s states over the state space
X . The symbol p(·) also refers to pdf over the state space X .

The graph Gk represents the directed time-varying commu-
nication network topology at the kth time instant, where all
the agents form the set of vertices V and Ek is the set of
directed edges. Let N j

k denote the neighbors of the jth agent
at the kth time instant from which it receives information and
J jk := N j

k ∪ {j} denote the set of inclusive neighbors.
Let N, R, and Rm×n be the sets of natural numbers (positive

integers), real numbers, and m by n matrices. Let λ and σ
represent the eigenvalue and the singular value of a square
matrix. Let 1 = [1, 1, . . . , 1]T , I, and 0 be the ones vector,
the identity matrix, and the zero matrix of appropriate sizes.
The symbols |·|, d·e, ln(·), and logc(·) represent the absolute
value, ceiling function, the natural logarithm and the logarithm
to the base c. Finally, ‖·‖`p represents the `p vector norm. The
Lp function denotes the set of all functions f(x) : Rnx → R
with the bounded integral

(´
X |f(x)|pdµ(x)

)1/p
, where µ is

a measure on X .

II. PRELIMINARIES

In this section, we first state four assumptions used through-
out this paper and then introduce the problem statement of
BCF. Next, we discuss an extension of the Bayesian filter to
sensor fusion over a network.

Assumption 1. In this paper, all the algorithms are presented
in discrete time. �

Assumption 2. The state space (X ⊂ Rnx ) is closed and
bounded, hence X is compact. �

Assumption 3. All continuous probability distributions are
upper-bounded by some large value M∈ R. �

Assumption 4. The inter-agent communication time scale is
much faster than the tracking/estimation time scale. �

These assumptions have been introduced to make the algo-
rithms computationally tractable and to take advantage of the
results dealing with bounded functions and compact support.
Note that discrete, continuous or mixed probability distribution
can be handled in a unified manner using measures. Hence,
every probability distribution in this paper is expressed as a
probability density function (pdf) over X .

Let X ⊂ Rnx be the nx-dimensional state space of the
target. The dynamics of the target in discrete time {xk, k ∈
N,xk ∈ X} is given by:

xk = fk(xk−1,vk−1) , (1)

where fk : Rnx × Rnv → Rnx is a possibly nonlinear time-
varying function of the state xk−1 and an independent and
identically distributed (i.i.d.) process noise vk−1, where nv is
the dimension of the process noise vector. Let m heteroge-
neous agents simultaneously track this target and estimate the
pdf of the target’s states (where m does not change with time).
The measurement model of the jth agent is given by:

zjk = hjk(xk,w
j
k), ∀j ∈ {1, . . . ,m}, (2)

where hjk : Rnx ×Rnwj → Rnzj is a possibly nonlinear time-
varying function of the state xk and an i.i.d. measurement
noise wj

k, where nzj , nwj are dimensions of the measurement
and measurement noise vectors respectively. Note that the
measurement model of agents is quite general since it ac-
commodates heterogeneous sensors, partial state observation,
varied sensors for sensor fusion in frequency domain, etc.

The objective of the BCF is to estimate the target’s states
and maintain consensus across the network. This objective is
achieved in two steps: (i) each agent locally estimates the pdf
of the target’s states using a Bayesian filter, and (ii) each
agent’s local estimate converges to a global estimate during
the consensus stage.

A. Bayesian Filter with Measurement Exchange

The objective of Bayesian filtering with/without measure-
ment exchange is to estimate the posterior pdf of the tar-
get’s states at the kth time instant, which is denoted by
F jk ,∀j ∈ {1, . . . ,m}, using the estimated prior pdf of the
target’s states F jk−1 from the (k−1)th time instant and the new
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measurement array obtained at the kth time instant. Exchange
of measurements is optional since heterogeneous agents, with
different priors, fields of view, resolutions, tolerances, etc.,
may not be able to combine measurements from other agents.
For example, if a satellite in space and a low flying quadrotor
are observing the same target, then they cannot exchange
measurements due to their different fields of view.

If an agent can combine measurements from another neigh-
boring agent during its update stage, then we call them mea-
surement neighbors. In this section, we extend the Bayesian
filter by assuming that each agent transmits its measurements
to other agents in the network, and receives the measurements
from its measurement neighbors. Let zS

j
k

k := {z`k,∀` ∈ S
j
k}

denote the array of measurements taken at the kth time
instant by the measurement neighbors of the jth agent, where
Sjk ⊆ J

j
k denotes the set of measurement neighbors among

the inclusive neighbors of the jth agent.
It is assumed that each agent either knows the prior F j0 =

p(x0|zj0) or F j0 is assumed to be uniformly distributed over
X . The prediction stage involves using the target dynamics
model (1) to obtain the estimated pdf of the target’s states at
the kth time instant via the Chapman–Kolmogorov equation:

pjk(xk) =

ˆ
X
pjk(xk|xk−1) pjk−1(xk−1) dµ(x) (3)

The probabilistic model of the state evolution pjk(xk|xk−1)
is defined by the target dynamics model (1) and the known
statistics of the i.i.d. process noise vk−1. The new measure-
ment array (zS

j
k

k ) is used to compute the posterior pdf of the

target’s states (F jk = pjk(xk|z
Sjk
k )) during the update stage

using Bayes’ rule (4):

pjk(xk|z
Sjk
k ) =

(∏
`∈Sjk

p`k(z`k|xk)
)
pjk(xk)

´
X

(∏
`∈Sjk

p`k(z`k|xk)
)
pjk(xk) dµ(x)

, (4)

The likelihood function p`k(z`k|xk), ∀` ∈ Sjk is defined by
the measurement model (2), and the corresponding known
statistics of the i.i.d. measurement noise w`

k.
Note that (4) is similar to the empirical equation for

Independent Likelihood Pool given in [34] and a generalization
of the Distributed Sequential Bayesian Estimation Algorithm
given in [35]. The structure of (4) ensures that an arbitrary part
of the prior distribution does not dominate the measurements.

III. COMBINING PROBABILITY DISTRIBUTIONS

In this section, we present algorithms for achieving con-
sensus in probability distributions across the network. The
objective of the consensus stage in Algorithm 1 is to guarantee
pointwise convergence of each F jk to a consensual pdf F?k ,
which is independent of j. This is achieved by each agent
recursively transmitting its estimated pdf of the target’s states
to other agents, receiving estimates of its neighboring agents,
and updating its estimate of the target. Let F jk,0 = F jk
represent the local estimated posterior pdf of the target’s states,
by the jth agent at the start of the consensus stage, obtained

using Bayesian filters with/without measurement exchange.
During each of the nloop iterations within the consensus stage
in Algorithm 1, this estimate is updated as follows:

F jk,ν =T
(
∪`∈J jk {F

`
k,ν−1}

)
,∀j ∈ {1, . . . ,m},∀ν ∈ N, (5)

where T (·) is the linear or logarithmic opinion pool for
combining the pdf estimates. Note that the problem of mea-
surement neighbors does not arise here since all pdfs are
expressed over the complete state space X .

Let F1, . . . , limn→∞ Fn, F? be real-valued measurable
functions on X , X be the Borel σ-algebra of X , and A be
any set in X . Let µFn , µF? denote the respective induced
measures of Fn, F? on X .

Lemma 1. (Pointwise convergence implies convergence in
Total Variation) If Fn converges to F? pointwise, i.e.,
limn→∞ Fn = F? pointwise; then the measure µFn converges
in TV to the measure µF? , i.e., limn→∞ µFn

T.V.−−→ µF? .

Proof: The proof follows from Scheffé’s theorem and
dominated convergence theorem [36, pp. 84].

The first method of combining the estimates is motivated by
the linear consensus algorithms widely studied in the literature
[6]– [10]. The pdfs are combined using the Linear Opinion
Pool (LinOP) of probability measures [24], [25]:

Fjk,ν =
∑
`∈J jk

aj`k,ν−1F
`
k,ν−1, ∀j ∈ {1, . . . ,m},∀ν ∈ N, (6)

where
∑
`∈J jk

aj`k,ν−1 = 1 and the updated pdf F jk,ν after
the ν th consensus loop is a weighted average of the pdfs of
the inclusive neighbors F`k,ν−1,∀` ∈ J

j
k from the (ν − 1)th

consensus loop, at the kth time instant. The LinOP solution is
typically multimodal and depends on the assumption that the
same 0-1 scale is used by every agent, so no clear choice for
jointly preferred estimate emerges from it [25].

A. Consensus using the Logarithmic Opinion Pool

Note that F jk,ν = pjk,ν(xk),∀xk ∈ X represents the pdf of
the estimated target’s states by the jth agent during the ν th

consensus loop at the kth time instant. The LogOP is given as
[37]:

Fjk,ν =pjk,ν(xk) =

∏
`∈J jk

(
p`k,ν−1(xk)

)aj`k,ν−1

´
X
∏
`∈J jk

(
p`k,ν−1(xk)

)aj`k,ν−1

dµ(x)

,

∀j ∈ {1, . . . ,m},∀ν ∈ N, (7)

where
∑
`∈J jk,ν−1

aj`k,ν−1 = 1 and the integral in the denom-

inator of (7) is finite. Thus the updated pdf Fjk,ν after the
ν th consensus loop is the weighted geometric average of the
pdfs of the inclusive neighbors F`k,ν−1,∀` ∈ J

j
k from the

(ν − 1)th consensus loop, at the kth time instant. The LogOP
solution is typically unimodal and less dispersed, indicating a
consensual estimate jointly preferred by the network [25]. The
LogOP solution is invariant under under rescaling of individual

636



degrees of belief, hence it preserves an important credo of uni–
Bayesian decision theory; i.e., the optimal decision should not
depend upon the choice of scale for the utility function or
prior probability distribution. The most compelling reason for
using LogOP is that it is externally Bayesian; i.e., finding the
consensus distribution commutes with the process of revising
distributions using a commonly agreed likelihood distribution.
Next, we present consensus theorems using the LogOP.

Assumption 5. The local estimated pdf at the start of the con-
sensus stage is positive everywhere, i.e., F jk,0 = pjk,0(xk) >
0, ∀xk ∈ X ,∀j ∈ {1, . . . ,m}. �

Assumption 5 is introduced to avoid regions with zero prob-
ability, since they would constitute vetoes and unduly great
emphasis would get placed on them. Moreover, the LogOP
guarantees that F jk,ν will remain positive for all subsequent
consensus loop.

Definition 1. (Hjk,ν vector for LogOP) For the purpose of
analysis, let us choose xk0 ∈ X such that pjk,ν(xk0) > 0,∀j ∈

{1, . . . ,m},∀ν ∈ N. Let us define Hjk,ν := ln

[
pjk,ν(xk)

pk,ν(x
j
k0)

]
.

Under Assumption 5,Hjk,ν is a well-defined function, but need
not be a L1 function. Then, by simple algebraic manipulation
of (7), we get:

Hjk,ν =
∑
`∈J jk

aj`k,ν−1H
`
k,ν−1, ∀j ∈ {1, . . . ,m}, ν ∈ N, (8)

which is similar to the LinOP (6). Let Uk,ν :=(
H1
k,ν , . . . ,Hmk,ν

)T
be an array of the estimates of all the

agents during the ν th consensus loop at the kth time instant,
then the equation (8) can be expressed concisely as:

Uk,ν = Pk,ν−1Uk,ν−1, ∀ν ∈ N, (9)

where Pk,ν−1 is a matrix with entries ajlk,ν−1. �

Thus we are able to use the highly nonlinear LogOP
for combining the pdf estimates, but we have reduced the
complexity of the problem to that of consensus using the
LinOP. Next, we discuss the algorithm for achieving global
exponential convergence on balanced graphs using the LogOP.

Assumption 6. The communication network topology of
the multi–agent system Gk is strongly connected (SC) and
balanced. The weighting factors aj`k,ν−1,∀j, ` ∈ {1, . . . ,m}
and the matrix Pk,ν−1 have the following properties: (i) the
weighting factors are the same for all consensus loops within
each time instant, (ii) the matrix Pk conforms with the graph
Gk, (iii) the matrix Pk is row stochastic, and (iv) the weighting
factors aj`k are such that the digraph Gk is balanced. �

Theorem 2. (Consensus using the LogOP on SC Balanced
Digraphs) Under Assumption 5 and 6, using the LogOP (7),
each F jk,ν globally exponentially converges pointwise to the
pdf F?k given by:

F?k = p?k(xk) =

∏m
i=1

(
pik,0(xk)

) 1
m

´
X
∏m
i=1

(
pik,0(xk)

) 1
m

dµ(x)

(10)

at a rate faster or equal to
√
λm−1(PTk Pk) = σm−1(Pk).

Furthermore, their induced measures globally exponentially
converge in total variation, i.e., limν→∞ µFjk,ν

T.V.−−→ µF?k , ∀j ∈
{1, . . . ,m}.

Proof: See Appendix A.

The KL divergence is a measure of the information lost
when the consensual pdf is used to approximate the locally
estimated posterior pdfs. We now show that the consensual
pdf F?k obtained using Theorem 2, which is the weighted
geometric average of the locally estimated posterior pdfs
F jk,0,∀j ∈ {1, . . . ,m}, minimizes the information lost during
the consensus stage because it minimizes the sum of KL
divergences with those pdfs.

Theorem 3. The consensual pdf F?k given by (10) globally
minimizes the sum of Kullback–Leibler (KL) divergences with
the locally estimated posterior pdfs at the start of the consen-
sus stage F jk,0,∀j ∈ {1, . . . ,m}, i.e.,

F?k = arg min
ρ∈L1(X )

m∑
i=1

DKL

(
ρ||F ik,0

)
, (11)

where L1(X ) is the set of all pdfs over the state space X
satisfying Assumption 5.

Proof: The sum of the KL divergences of a pdf ρ ∈
L1(X ) with the locally estimated posterior pdfs is given by:

m∑
i=1

DKL

(
ρ||F ik,0

)
=

m∑
i=1

ˆ
X

(
ρ(xk) ln(ρ(xk))−ρ(xk) ln(pik,0(xk))

)
dµ(x). (12)

Taking the logarithm, in the KL divergence formula, to the

base c :=

(´
X
∏m
i=1

(
pik,0(xk)

) 1
m

dµ(x)

)
and then differen-

tiating
∑m
i=1DKL

(
ρ||F ik,0

)
with respect to ρ using Leibniz

integral rule [36, pp. 372] gives:

m∑
i=1

ˆ
X

(
logc(ρ(xk)) + 1− logc(p

i
k,0(xk))

)
dµ(x) = 0 ,

which is minimized by F?k .

Note that if a central agent receives all the locally estimated
posterior pdfs (F jk,0,∀j ∈ {1, . . . ,m}) and is tasked to find
the best estimate in the information theoretic sense, then it
would also yield the same consensual pdf F?k given by (10).
Hence we claim to have achieved distributed estimation using
this algorithm.
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B. Communicating Probability Distributions

The consensus algorithms need the estimated pdfs to be
communicated to other agents in the network. The first ap-
proach involves approximating the pdf by a weighted sum of
Gaussians and then transmitting this approximate distribution.
Let N (xk − mi, Bi) denote the Gaussian density function,
where the mean is the nx-vector mi and the covariance is
the positive-definite symmetric matrix Bi. The Gaussian sum
approximations lemma of [38, pp. 213] states that any pdf
F = p(xk) can be approximated as closely as desired in
the L1(Rnx) space by a pdf of the form F̂ = p̂(xk) =∑ng
i=1 αiN (xk − mi, Bi), for some integer ng and positive

scalars αi with
∑ng
i=1 αi = 1. For an acceptable communica-

tion error εcomm > 0, there exists ng , αi, mi and Bi such that
‖F − F̂‖L1

≤ εcomm. Let F̃jk,ν be the LinOP solution after
combining local pdfs corrupted by communication error, i.e.,
F̃ jk,ν := T

(
∪`∈J jk {F̂

`
k,ν−1}

)
where T (·) is either LinOP or

LogOP. Then we get ‖F jk,ν − F̃
j
k,ν‖L1

≤ νεcomm, ∀ν ∈ N,
where F jk,ν is the true solution obtained from uncorrupted
local pdfs. Several techniques for estimating the parameters
are discussed in the Gaussian mixture model literature, like
maximum likelihood (ML) and maximum a posteriori (MAP)
parameter estimation [39]– [41]. Hence, in order to commu-
nicate the pdf F̂ , the agent needs to transmit 1

2ngnx (nx + 3)
real numbers.

If particle filters are used to evaluate the Bayesian filter and
combine the pdfs [22], then the resampled particles represent
the agent’s estimated pdf of the target. Hence communicating
pdfs is equivalent to transmitting these resampled particles.
The information theoretic approach for communicating pdfs
is discussed in [42]. Now that we have established that
communication of pdfs is possible, let us discuss the complete
BCF algorithm.

Algorithm 1 BCF–LogOP on SC Balanced Digraphs
1: (one cycle of j th agent during kth time instant)
2: Given the pdf from previous time step

Fj
k−1 = pjk−1(xk−1)

3: Set nloop, the weights aj`k } Theorems 2, 4
4: while tracking do
5: Compute the prior pdf pjk(xk)

}
Bayesian

Filtering Stage6: Compute the posterior pdf Fj
k

7: for ν = 1 to nloop


LogOP–based

Consensus
Stage

8: if ν = 1 then Set Fj
k,0 = Fj

k

end if
9: Obtain the communicated

pdfs F`
k,ν−1, ∀` ∈ J j

k

10: Compute the new pdf Fj
k,ν

end for
11: Set Fj

k = Fj
k,nloop

end while

IV. MAIN ALGORITHMS: BAYESIAN CONSENSUS
FILTERING

In this section, we finally present the BCF algorithm il-
lustrated by Algorithm 1. The BCF is performed in two

steps: (i) each agent locally estimates the pdf of the target’s
states using a Bayesian filter with/without measurements from
neighboring agents, as discussed in Section II-A, and (ii)
during the consensus stage, each agent recursively transmits
its pdf estimate of the target’s states to other agents, receives
estimates of its neighboring agents, and combines them using
the LogOP as discussed in Section III-A. In this section, we
compute the number of consensus loops (nloop) needed to
reach a satisfactory consensus estimate across the network and
discuss the convergence of this algorithm.

Definition 2. (Disagreement vector θk,ν) Let us define

θk,ν :=
(
θ1k,ν , . . . , θ

m
k,ν

)T
, where θjk,ν := ‖F jk,ν − F?k‖L1

.
Since the L1 distance between pdfs is upper bounded by 2,
the `2 norm of the disagreement vector (‖θk,ν‖`2 ) is upper
bounded by 2

√
m. �

This conservative bound is used to obtain the minimum
number of consensus loops for achieving ε-consensus across
the network, while tracking a moving target. Let us now
quantify the divergence of the local pdfs during the Bayesian
filtering stage.

Definition 3. (Error propagation dynamics Γ(·)) Let us as-
sume that the dynamics of the `2 norm of the disagreement
vector during the Bayesian filtering stage can be obtained from
the target dynamics and measurement models (1) and (2).
The error propagation dynamics Γ(·) estimates the maximum
divergence of the local pdfs during the Bayesian filtering stage,
i.e., ‖θk,0‖`2 ≤ Γ

(
‖θk−1,nloop‖`2

)
, where ‖θk−1,nloop‖`2 is the

disagreement vector with respect to F?k−1 at the end of the
consensus stage during the (k−1)th time instant; and ‖θk,0‖`2
is the disagreement vector with respect to F?k after the update
stage during the kth time instant. �

Next we obtain the minimum number of consensus loops
for achieving ε-consensus across the network and also derive
conditions on the communication network topology for a given
number of consensus loops.

Theorem 4. (BCF–LogOP on SC Balanced Digraphs) Under
Assumptions 5, 6, and in the absence of communication
inaccuracies, each agent tracks the target using the BCF al-
gorithm. For some acceptable consensus error εconsensus > 0
and γk = min

(
Γ
(
‖θk−1,nloop

‖`2
)
, 2
√
m
)
:

(i) if the number of consensus loops is at least nloop ≥⌈
ln(εconsensus/γk)

lnσm−1(Pk)

⌉
for a given Pk; or

(ii) if the communication network topology (Pk) during the kth

time instant is such that σm−1(Pk) ≤
(
εconsensus

γk

) 1
nloop for a

given nloop;
then the `2 norm of the disagreement vector at the end of the
consensus stage is less than εconsensus, i.e., ‖θk,nloop

‖`2 ≤
εconsensus.

Proof: It follows from Theorem 2 that, if θk,0 is
the initial disagreement vector at the start of the consen-
sus stage, then ‖θk,nloop‖`2 ≤ (σm−1(Pk))

nloop ‖θk,0‖`2 ≤
(σm−1(Pk))

nloop γk. Thus, we get the conditions on nloop
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or σm−1(Pk) from the inequality (σm−1(Pk))
nloop γk ≤

εconsensus.
Note that for the particular case where nloop = 1, we need

σm−1(Pk) ≤ εconsensus

γk
for ε-convergence across the network.

A. Hierarchical Bayesian Consensus Filtering

In this section, we modify the original problem statement
such that only m1 out of m agents are able to observe
the target at the kth time instant. In this scenario, the other
m2(= m − m1) agents are not able to observe the target.
Without loss of generality, we assume that the first m1

agents, i.e., {1, 2, . . . ,m1}, are tracking the target. During
the Bayesian filtering stage, each tracking agent (i.e., agent
tracking the target) estimates the posterior pdf of the target’s
states at the kth time instant (F jk = pjk(xk|z

Sjk∩{1,...m1}
k ),∀j ∈

{1, . . . ,m1}) using the estimated prior pdf of the target’s

states (F jk−1) and the new measurement array zS
j
k∩{1,...m1}
k :={

z`k,∀` ∈ S
j
k ∩ {1, . . .m1}

}
obtained from the neighboring

tracking agents. Each non-tracking agent (i.e., agent not track-
ing the target) only propagates its prior pdf during this stage
to obtain pjk(xk),∀j ∈ {m1 + 1, . . . ,m}.

The objective of hierarchical consensus algorithm is to guar-
antee pointwise convergence of each F jk,ν ,∀j ∈ {1, . . . ,m}
to a pdf F?k and only the local estimates of the agents tracking
the target contribute to the consensual pdf. This is achieved by
each tracking agent recursively transmitting its estimate of the
target’s states to other agents, only receiving estimates from its
neighboring tracking agents and updating its estimate of the
target. On the other hand, each non-tracking agent recursively
transmits its estimate of the target’s states to other agents,
receives estimates from all its neighboring agents and updates
its estimate of the target. Let Dk represent the communication
network topology of only the tracking agents.

Assumption 7. The communication network topologies Gk
and Dk are SC and Dk is balanced. The weighting factors
aj`k,ν−1,∀j, ` ∈ {1, . . . ,m} and the matrix Pk,ν−1 have the
following properties: (i) the weighting factors are the same
for all consensus loops within each time instants; (ii) if j ∈
{1, . . . ,m1}, then aj`k > 0 if and only if ` ∈ J jk ∩{1, . . . ,m1},
else aj`k = 0; (iii) if j ∈ {m1 + 1, . . . ,m}, then aj`k > 0 if
and only if ` ∈ J jk , else aj`k = 0; (iv) the matrix Pk is row
stochastic, and (v) the weighting factors aj`k are such that the
digraph Dk is balanced. �

Theorem 5. (Hierarchical Consensus using the LogOP on
SC Balanced Digraphs) Under Assumptions 5 and 7, using
the LogOP (7), each F jk,ν globally exponentially converges
pointwise to the pdf F?k given by:

F?k = p?k(xk) =

∏m1

i=1

(
pik,0(xk)

) 1
m1

´
X
∏m1

i=1

(
pik,0(xk)

) 1
m1

dµ(x)

(13)

at a rate faster or equal to
√
λm1−1(PTk1Pk1) = σm1−1(Pk1),

where the matrix Pk1 conforms with the directed graph Dk.
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Fig. 1. The SSN locations are shown along with their static SC balanced
communication network topology. The orbit of the Iridium–33 debris is shown
in red, where ? marks its actual position during particular time instants.

Only the initial estimates of the tracking agents contribute to
the consensual pdf F?k . Furthermore, their induced measures
converge in total variation, i.e., limν→∞ µFjk,ν

T.V.−−→ µF?k , ∀j ∈
{1, . . . ,m}.

Proof: The proof follows from Theorem 2. In fact, the
inessential states die out geometrically fast [43, Theorem 4.3,
pp. 120].

A simulation example of Hierarchical BCF–LogOP algo-
rithm for tracking orbital debris in space is discussed in the
next section.

V. NUMERICAL EXAMPLE

Currently, there are over ten thousand objects in Earth
orbit, of size 0.5 cm or greater, and almost 95% of them are
nonfunctional space debris. These debris pose a significant
threat to functional spacecraft and satellites in orbit. The US
has established the Space Surveillance Network (SSN) for
ground based observations of the orbital debris using radars
and optical telescopes [44] (See Fig. 1). In February 2009, the
Iridium–33 satellite collided with the Kosmos–2251 satellite
and a large number of debris fragments were created. In this
section, we use the Hierarchical BCF–LogOP Algorithm to
track one of the Iridium–33 debris created in this collision.

The actual two-line element set (TLE) of the Iridium–
33 debris was accessed from North American Aerospace
Defense Command (NORAD) on 4th Dec 2013. The nonlinear
Simplified General Perturbations (SGP4) model, which uses an
extensive gravitational model and accounts for the drag effect
on mean motion [45], [46], is used as the target dynamics
model. If the debris is visible above the sensor’s horizon, then
it is assumed to create a single measurement during each time
step of one minute. The heterogeneous measurement model of
the jth sensor is given by:

zjk = xk +wj
k, where wj

k = N (0, (1000 + 50j)× I) ,

where xk ∈ R3 is the actual location of the debris. Since it
is not possible to implement the SGP4 target dynamics on
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Fig. 2. (a) Number of SSN sensors observing debris. (b) Trajectories of
particles for stand-alone Bayesian filters for 10th SSN sensor. Trajectories of
particles of all sensors for (c) Hierarchical BCF–LinOP and (d) Hierarchical
BCF–LogOP.

distributed estimation algorithms discussed in the literature
[1]– [15], we compare the performance of our Hierarchical
BCF–LogOP algorithm against the Hierarchical BCF–LinOP
algorithm, where the LinOP is used during the consensus
stage.

In this simulation example, we simplify the debris tracking
problem by assuming only the mean motion (n) of the debris
is unknown, which needs to be estimated within 100 minutes.
Hence, each sensor knows the other TLE parameters of the
debris and an uniform prior distribution (F j0 ) is assumed. Note
that at any time instant, only a few of the SSN sensors can
observe the debris, as shown in Fig 2(a). The estimates of the
stand-alone Bayesian filter for the 10th sensor do not converge
due to large measurement errors, in spite of observing the
debris for some time.

Particle filters with resampling are used to evaluate the
Bayesian filters and communicate pdfs in the Hierarchical
BCF algorithms. 100 particles are used by each sensor and
10 consensus loops are executed during each time step of one
minute. As expected, all the sensors converge on the correct
value of n of 14.6 revs per day. The Hierarchical BCF–LinOP
estimates are multimodal for the first 90 minutes. On the
other hand, the Hierarchical BCF–LogOP estimates converges
to the correct value within the first 10 minutes because the
LogOP algorithm efficiently communicates the best consensual
estimate to other sensors during each time step and achieves
consensus across the network.

VI. CONCLUSION

In this paper, we extended the scope of distributed esti-
mation algorithms in a Bayesian filtering framework in order
to simultaneously track targets, with general nonlinear time-
varying target dynamic models, using a strongly connected

network of heterogeneous agents, with general nonlinear time-
varying measurement models. The LogOP algorithm on SC
balanced digraph converges globally exponentially, and the
consensual pdf minimizes the information lost during the
consensus stage because it minimizes the sum of KL di-
vergences to each locally estimated probability distribution.
We introduced the BCF algorithm, where the local estimated
posterior pdfs of the target’s states are first updated using
the Bayesian filter and then recursively combined during the
consensus stage using LogOP, so that the agents can track a
moving target and also maintain consensus across the network.
Conditions for exponential convergence of the BCF algorithm
and constraints on the communication network topology have
been studied. The Hierarchical BCF algorithm, where some of
the agents do not observe the target, has also been investigated.
Simulation results demonstrate the effectiveness of the BCF
algorithms for nonlinear distributed estimation problems.

APPENDIX A
PROOF OF THEOREM 2

Under Assumption 6, Pk is a nonnegative, doubly stochastic
and irreducible matrix. Hence Perron–Frobenius theorem (cf.
[43, pp. 3]) states that limν→∞ P νk = 1

m11T and each Hjk,ν
converges pointwise to H?k = 1

m1TUk,0 = 1
m

∑m
i=1Hik,0. We

have ∀xk ∈ X :

lim
ν→∞

(
ln pjk,ν(xk)−ln pjk,ν(xk0)

)
=ln p?k(xk)−ln p?k(xk0).

As ∃x̄k0 ∈ X such that limν→∞ pjk,ν(x̄k0) = p?k(x̄k0), we
get limν→∞ pjk,ν(xk) = p?k(xk),∀xk ∈ X . Thus each F jk,ν
converges pointwise to the consensual pdf F?k given by (10).
By Lemma 1, the measure induced by F jk,ν on X converges
in total variation to the measure induced by F?k on X , i.e.,
limν→∞ µFjk,ν

T.V.−−→ µF?k .

If Vtr =
[

1√
m

1, Vs

]
are the orthonormal eigenvectors of

PTk Pk, then by spectral decomposition [47] we get that the
rate at which Uk,ν synchronizes to 1√

m
1 (or U?k ) is equal

to the rate at which V Ts Uk,ν → 0(m−1)×1. If Φk,ν =
(V Ts Uk,ν)TV Ts Uk,ν is a candidate Lyapunov function, then
Φk,ν ≤

(
λmax(V Ts P

T
k PkVs)

)
Φk,ν−1. Hence each Hjk,ν glob-

ally exponentially converges pointwise to H?k with a rate faster

or equal to
√
λm−1(PTk Pk) = σm−1(Pk).

Next, we need to find the rate of convergence of F jk,ν
to F?k . Let us define the continuous function αjk,ν(xk) such

that αjk,ν(xk) =

[
pjk,ν(xk)

p?k(xk)
p?k(xk0)

pjk,ν(xk0)

]
if pjk,ν(xk)p?k(xk0) ≥

p?k(xk)pjk,ν(xk0) and αjk,ν(xk) =

[
p?k(xk)

pjk,ν(xk)

pjk,ν(xk0)

p?k(xk0)

]
other-

wise. Then we get:

αjk,ν(xk) ≤
(
αjk,0(xk)

)(σm−1(Pk))
ν

. (14)

Using the mean value theorem, (14) can be simplified to:

αjk,ν(xk)− 1 ≤ (σm−1(Pk))
ν
(
αjk,0(xk)− 1

)
. (15)
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Irrespective of the orientation of αjk,ν(xk) and αjk,0(xk),
(15) can be written as (16) by multiplying with 1

αjk,ν(xk)
or

1

αjk,0(xk)
, and then with p?k(xk).∣∣∣∣ p?k(xk0)pjk,ν(xk0)

pjk,ν(xk)− p?k(xk)

∣∣∣∣
≤ (σm−1(Pk))

ν

∣∣∣∣ p?k(xk0)pjk,0(xk0)
pjk,0(xk)− p?k(xk)

∣∣∣∣ . (16)

If we choose x̃k0 ∈ X such that pjk,0(x̃k0) = p?k(x̃k0), then
we can simplify (16) to:∣∣∣pjk,ν(xk)− p?k(xk)

∣∣∣ ≤ (σm−1(Pk))
ν
∣∣∣pjk,0(xk)− p?k(xk)

∣∣∣ .
Thus each F jk,ν = pjk,ν(xk) globally exponentially converges
to F?k = p?k(xk) with a rate faster or equal to σm−1(Pk). �
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